LAMINAR FLOW IN A NARROW
CYLINDRICAL TUBE
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Laminar flows during periodic pressure drops and transverse oscillations of the liquid-solid
interface are discussed.

It is necessary to know the value of laminar flow velocity in the solution of certain applied problems.
Among them are the secondary flows arising in tubing during transverse oscillations and the instability of
nonresonance vibrational heating in infrared heaters.

In work on the ultrasonic capillary effect [1, 2], it was found that during contact of the ultrasonic
radiator surface, which was submerged in a liquid, with the end of a capillary a flow rate in the capillary
of the order of 10~! m/sec was observed and the velocity was an order of magnitude less without contact;
an increase in the frequency of the sound source above 20 kHz had no effect on the flow rate, and the max-
imum velocities were observed in capillaries with radii of 0.35~0.4 mm.

The data cited provides a basis for explanation by means of models which consider the flow of an in-
compressible fluid in a rigid cylindrical tube under the action of periodic forces and models which consider
sonic flows produced by transverse oscillations of the channel walls.

We consider the cylindrical tube to be narrow in the acoustic sense (R < A).

Model I. We assume the desired velocity distribution is independent of the x coordinate, along which
the tube axis is directed. In this case, the convective terms in the equation of motion vanish, and the equa~-
tion of nonstationary laminar flow takes the form [3]
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The boundary condition for Eq. (1) corresponds to adhesion of the liquid to the wall,

(R, 1) 0. (2)
At the initial time, the liquid is at rest,

e(r, 0) 0. {3

If a one-to-one correspondence is established between the following parameters (the so-called elec-
troacoustic analogy [4]), electric admittance A and acoustic admittance A, voltage E and force f, current
I and veloeity v, the liquid flow velocity under the action of an arbitrary force is described by an "acoustic
Ohm's Law" given in the form of a contraction of force and total admittance,

v=7Fx*A. 4)

Performing a Laplace transformation of Eq. (1) with respect to the variable t and using the expansion
theorem [5] for pulsating flow where f(t) ~ Re(foeiwt), we obtain

u(r, 1) :Re{ fo [dle"‘“ =¥ dke"th"} ,

Je=1
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and transforms to an expression corresponding to the response of the system
(1)-(3) to a 6-shaped perturbation when w < R%/A2v; at high frequencies, this
term makes no significant contribution to the determination of the velocity,

Fig. 1. Velocity pro-

file for secondary acous- ; 7y (r ]//, _“l_)

tic flow in a chamnel with dy=—— 1— A (5)
R=075-10%m: 1) @ J (R /iij

=1265 sec”!; 2)w = 3126 RV s /-

sec™t; 3) w = 4366 sec”l. For RV w/v » 1, the time-averaged square of the velocity determined by

means of d; has a maximum which is not located on the tube axis but is de-

termined by the relation
)
(R—rpax) l/Tv =~2,8.

This phenomenon was observed experimentally by E. Richardson and E, Taylor [6].

Knowing the average admittance over a cross section,

A(t) =

R
2(

A(r, tydr. 6)
Rzgr(r)r (

the average velocity over a cross section can be obtained for a narrow tube. Assuming RV w/v > 10 and
using the approximate expression [7]

L)
Joxi®) 7

we obtain the average admittance over a cross section on the basis of Egs. (5) and (6),

- 8 . (R
A= Do | —11|. 7
R { l<6ah )] ()

For a pressure gradient of 10° N/m?® with w ~ 10° sec™! and v ~ 10~% m?%/sec, the flow velocity calculated
from Eqs. (4) and (7) does not exceed 10”2 m/sec.

Thus the observed flows [1, 2] were not caused by a periodic pressure drop at the ends of a capillary
created by an ultrasonic source,

Model II. We assume that the flows arise through the action of fields concentrated at the liquid-solid
boundary. For both standing waves and for an oscillating cylinder, the properties of these flows are mani-
fest near the boundary at a distance of the order of the thickness of the acoustic boundary layer, 64k
= B~1(V2v)/w. In the present case, w is one of the normal oscillational frequencies of the capillary. Be-
cause of the complexity of the determination of boundary conditions for flows in a narrow cylindrical tube
undergoing transverse oscillations, we consider the flows produced in a plane channel by transverse os-
cillations of its boundaries.

Excitation of a glass capillary by an ultrasonic source occurs in a limited frequency spectrum re-
sulting from the inertial properties of the capillary which lead to considerable damping of normal oscilla-
tions when w > 10! sec™!. An increase in the frequency of the exciting sonic source above 20 kHz at con-
stant power has no significant effect on the oscillational spectrum of the capillary.

It was pointed out [8] that when Bh > 5, the boundary at z = 2h has no effect on flow near the test
portion of the boundary at z = 0. '

In the approximation

0 =p, 0%, P=Py P V=Ve"LV,
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TABLE 1. Values of Secondary Flow Parameters

|
w,sec™? 1\ (R—rpy)-107%, m i B, m- B (R—rp}
1265 0,6 ( 25152 1,5
3126 0.375 39534 L5
4366 0.3 ] 46723 1.4

we obtain equations for the rotational portion
2V = ifrot rotVy,, (8)

and for the irrotational portion when 3 > w/c
2V p = — B2 graddiv Ve (9)

from the Navier—Stokes equation, the continuity equation, and the adiabatic relation which connects the
values of Py and py, having represented V, in the form of the sum

Vi=Vie--Vip*
where

divVy =0, rotV,;=0,
On the basis of Egs. (8) and (9), we obtain as in 8]

—- N { 0:’1 Tz
Vi= log(1— e ™) 0 [—-7—5%7# r‘l%% (1—¢t )}} , (10)

for the plane channel, where

= (1~ 0)p.

The component vyx is a viscous Stokes wave attached to the boundary and the normal component vy, at z
= 0 is equal to the normal velocity of the boundary,
| 0 |
Uyr = - .
2= dz =0

We obtain the tangential component of secondary flow velocity from

PEREN I P N A

o PV sy O P (11)

where the symbol {) denotes averaging over a cycle.

On the basis of Eq. (10), we have
Vo Ovy . o7F dun

v

2 (1—2C = 7%y,

T T 7 2

Co P 00, dl“‘S——ﬁ Cc=91,

i SNGEEIE

N ST T ey |
where
C=e¢™cospz, S= e P sinBz.
For the boundary conditions

»aazx

Vgl = 0, =90
e=0 62 iz=I
we obtain from Eq. (11)
1
oy = — -0 g 9% (A B - L E_2g
2 ox
B C—S—1H-+1-—-C (12)

k J
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where o
E=(1—¢"%),
A= 2B% - B [30 (h) — 5S (B) - 2 % Ch —e—zﬁz].
L
It is clear from Eq. (12) that the tangential component v,x of the secondary flow is directed toward reduc-
tion of v, (immobilization of the capillary), as has been observed [1, 2].

The profile of vyy in the channel is shown in Fig. 1 for R = 0.75-1073 m and it is of interest that the
maximum vyx is separated from the boundary by a distance satisfying the relation (Table 1)

- p(R—rmax):l’s'

Calculations based on Eq. (12) for k ~ 107t m, £~ 107°m, and R ~10~% m give values for secondary flow
velocity of the order of 107%-10"! m/sec. A calculation of secondary flows averaged over cross section
shows a tendency toward reduction in velocity with increase in capillary radius from 0.4 to 1 mm, which
results from the reduction in the contribution of acoustic flows.

NOTATION
t is the time;
X, Z are the coordinates;
r is the current radius;
R is the internal radius of tube;
v is the kinematic viscosity;
Py, o are the equilibrium pressure density;
Py, o4 are the variation of pressure, density in sonic wave;
Ak is the zeroes of Bessel function of zeroth order;
2h is the height of channel;
k © is the wave number of respective boundary mode;
&0 is the transverse displacement of boundary;
A, cC are the wavelength and sound speed in liquid.
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